Computational Shape Design Optimization of Femoral Implants: Towards Efficient Forging Manufacturing

datacite.creatorTuninetti, Víctor
datacite.creatorFuentes, Geovanni
datacite.creatorOñate, Ángelo
datacite.creatorNarayan, Sunny
datacite.creatorCelentano, Diego
datacite.creatorGarcía Herrera, Claudio
datacite.creatorMenacer, Brahim
datacite.creatorPincheira, Gonzalo
datacite.creatorGarrido, César
datacite.creatorValle, Rodrigo
datacite.date.issued2024
datacite.identifierDOI
datacite.identifier.doi10.3390/app14188289
datacite.identifier.issn2076-3417
datacite.identifier.orcid0000-0002-2808-0415
datacite.identifier.orcid0000-0002-4542-3731
datacite.identifier.orcid0000-0001-7033-6341
datacite.identifier.orcid0000-0002-7600-0619
datacite.identifier.orcid0000-0002-1283-8551
datacite.identifier.orcid0000-0002-7922-1847
datacite.identifier.orcid0000-0002-5853-0448
datacite.identifier.orcid0000-0002-0009-1665
datacite.identifier.orcid0000-0001-5995-5926
datacite.identifier.wosidWOS:001323271900001
datacite.rightsAcceso abierto
datacite.subjectHip replacement
datacite.subjectFemoral stem
datacite.subjectBone implant
datacite.subjectFinite element analysis
datacite.subjectTopological optimization
datacite.titleComputational Shape Design Optimization of Femoral Implants: Towards Efficient Forging Manufacturing
dc.date.accessioned2024-10-11T19:37:49Z
dc.date.available2024-10-11T19:37:49Z
dc.description.abstractTotal hip replacement is one of the most successful orthopedic operations in modern times. Osteolysis of the femur bone results in implant loosening and failure due to improper loading. To reduce induced stress, enhance load transfer, and minimize stress, the use of Ti-6Al-4V alloy in bone implants was investigated. The objective of this study was to perform a three-dimensional finite element analysis (FEA) of the femoral stem to optimize its shape and analyze the developed deformations and stresses under operational loads. In addition, the challenges associated with the manufacturing optimization of the femoral stem using large strain-based finite element modeling were addressed. The numerical findings showed that the optimized femoral stem using Ti-6Al-4V alloy under the normal daily activities of a person presented a strains distribution that promote uniform load transfer from the proximal to the distal area, and provided a mass reduction of 26%. The stress distribution was found to range from 700 to 0.2 MPa in the critical neck area of the implant. The developed computational tool allows for improved customized designs that lower the risk of prosthesis loss due to stress shielding.
dc.description.pages15 p.
dc.identifier.urihttps://repositorio.utalca.cl/repositorio/handle/1950/14278
dc.languageInglés
dc.publisherMDPI
dc.relation.urihttps://www.mdpi.com/2076-3417/14/18/8289
dc.sourceApplied Sciences
oaire.citationTitleApplied Sciences
oaire.licenseConditionhttps://creativecommons.org/licenses/by/4.0/
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo de Revista
oaire.versionVersión Publicada
utalca.catalogadorPAG
utalca.facultadUniversidad de Talca (Chile). Facultad de Ingeniería. Departamento de Ingeniería Industrial.
utalca.facultadUniversidad de Talca (Chile). Facultad de Ingeniería. Departamento de Tecnología Industriales
utalca.idcargapag11102024
utalca.indexArtículo indexado en Web of Science
utalca.indexArtículo indexado en Scopus
utalca.informaciondegeneroHombre
utalca.odsSalud y bienestar
utalca.odsIndustria, innovación e infraestructura
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
001323271900001.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format