Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations

datacite.creatorContreras, René
datacite.creatorCelentano, Diego
datacite.creatorLuo, Tengfei
datacite.creatorLiu, Zeyu
datacite.creatorMorales-Ferreiro, J. O.
datacite.date.issued2023
datacite.identifierDOI
datacite.identifier.doi10.3390/nano13020315
datacite.identifier.wosidWOS:000927836800001
datacite.rightsAcceso abierto
datacite.size9 p.
datacite.subjectThermal conductivity
datacite.subjectNiobium diselenide
datacite.subjectFirst-principles simulation
datacite.subjectBoltzmann transport equation
datacite.subjectThermoelectric
datacite.titlePhonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations
dc.date.accessioned2024-11-26T18:41:41Z
dc.date.available2024-11-26T18:41:41Z
dc.description.abstractNiobium diselenide (NbSe2) is a layered transition metal dichalcogenide material which possesses unique electrical and superconducting properties for future nanodevices. While the superconducting, electrical, and bulk thermal transport properties of NbSe2 have been widely studied, the in-plane thermal transport property of NbSe2, which is important for potential thermoelectric applications, has not been thoroughly investigated. In this report, we study the lattice in-plane thermal transport of 2D NbSe2 by solving the phonon Boltzmann transport equation with the help of the first principles calculation. The thermal conductivity obtained at room temperature is 12.3 W/mK. A detailed analysis shows that the transverse acoustic phonon dominates the lattice thermal transport, and an anomalously small portion of electron contribution to the total thermal conductivity is observed for this metallic phase. The results agree well with experimental measurements and provide detailed mode-by-mode thermal conductivity contribution from different phonon modes. This study can provide useful information for integrating NbSe2 in nanodevices where both electrical and thermal properties are critical, showing great potential for integrating monolayer NbSe2 to thermoelectric devices.
dc.identifier.folio11220198
dc.identifier.urihttps://repositorio.utalca.cl/repositorio/handle/1950/14701
dc.languageInglés
dc.publisherMDPI
dc.relation.urihttps://www.mdpi.com/2079-4991/13/2/315
dc.sourceNanomaterials
oaire.citationIssue2
oaire.citationTitleNanomaterials
oaire.citationVolume13
oaire.fundingReferenceJ.O.M.-F. acknowledges the support provided by the Chilean Council for Research and Development ANID through the Fondecyt project, number 11220198. Z.L. would like to thank the Fundamental Research Funds for the Central Universities (No. 531118010723) and
oaire.licenseConditionhttps://creativecommons.org/licenses/by/4.0/
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo de Revista
oaire.versionVersión publicada
utalca.catalogadorMPE
utalca.facultadUniversidad de Talca (Chile). Facultad de Ingeniería. Departamento de Tecnologías Industriales.
utalca.idcargaMPE26nov2024
utalca.indexArtículo indexado en Web of Science
utalca.indexArtículo indexado en Scopus
utalca.informaciondegeneroHombre
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
nanomaterials1300315.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format