Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)

datacite.alternateIdentifier.doihttps://doi.org/10.1007/s11030-010-9234-9
datacite.alternateIdentifier.issn1381-1991
datacite.creatorFernandez, M.
datacite.creatorCaballero, J.
datacite.creatorFernandez, L.
datacite.creatorSarai, A.
datacite.date.issued2011-02
datacite.subjectDrug designen_US
datacite.subjectEnzyme inhibitionen_US
datacite.subjectFeature selectionen_US
datacite.subjectIn silico modelingen_US
datacite.subjectQSARen_US
datacite.subjectReviewen_US
datacite.subjectSARen_US
datacite.subjectStructure-activity relationshipsen_US
datacite.titleGenetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)en_US
dc.date.accessioned2012-09-27T22:14:16Z
dc.date.available2012-09-27T22:14:16Z
dc.descriptionCaballero, J (Caballero, Julio). Univ Talca, Ctr Bioinformat & Simulac Mol, Talca, Chileen_US
dc.description.abstractMany articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.en_US
dc.identifier.citationMOLECULAR DIVERSITY Volume: 15 Issue: 1 Special Issue: SI Pages: 269-289 DOI: 10.1007/s11030-010-9234-9en_US
dc.identifier.urihttps://repositorio.utalca.cl/repositorio/handle/1950/8912
dc.languageenen_US
dc.publisherSPRINGER, VAN GODEWIJCKSTRAATen_US
oaire.resourceTypeArtículoen_US
utalca.indexArtículo de publicación ISI
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
TEXTO COMPLETO.htm
Size:
3.65 KB
Format:
Hypertext Markup Language
Description:
License bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: