Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation

datacite.creatorMorales Ferreiro, Jorge O.
datacite.creatorSilva Oelker, Gerardo
datacite.creatorKumar, Chandra
datacite.creatorZambra Sazo, Carlos Enrique
datacite.creatorLiu, Zeyu
datacite.creatorDíaz Droguett, Donovan E.
datacite.creatorCelentano, Diego
datacite.date.issued2024
datacite.identifierDOI
datacite.identifier.doi10.3390/nano14211751
datacite.identifier.issn2079-4991
datacite.identifier.orcid0000-0002-3391-3485
datacite.identifier.orcid0000-0002-7600-0619
datacite.identifier.wosidWOS:001351829300001
datacite.rightsAcceso abierto
datacite.subjectPenta-graphene
datacite.subjectDensity functional theory
datacite.subjectHydrogenated
datacite.subjectFluorinated
datacite.subjectChlorinated
datacite.subjectBandgap
datacite.subjectElectronic structure
datacite.titleTuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation
dc.date.accessioned2024-11-26T12:53:22Z
dc.date.available2024-11-26T12:53:22Z
dc.description.abstractWe performed first-principles density functional theory (DFT) calculations to numerically investigate the electronic band structures of penta-graphene (PG), a novel two-dimensional carbon material with a pentagonal lattice structure, and its chemically functionalized forms. Specifically, we studied hydrogenated PG (h-PG), fluorinated PG (f-PG), and chlorinated PG (Cl-PG). We used the generalized gradient approximation (GGA) and the hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional in the DFT-based software VASP to capture electronic properties accurately. Our results indicate that hydrogenation and fluorination increased the indirect bandgap of PG from 3.05 eV to 4.97 eV and 4.81 eV, respectively, thereby effectively transforming PG from a semiconductor to an insulator. In contrast, we found that chlorination closed the bandgap, thus indicating the metallic behavior of Cl-PG. These results highlight the feasibility of tuning the electronic properties of PG through functionalization, offering insight into designing new materials for nanoelectronic applications.
dc.description.pages9 p.
dc.identifier.folio11220383
dc.identifier.folio11220198
dc.identifier.urihttps://repositorio.utalca.cl/repositorio/handle/1950/14667
dc.languageInglés
dc.publisherMdpi
dc.relation.urihttps://www.mdpi.com/2079-4991/14/21/1751
dc.sourceNanomaterials
oaire.citationTitleNanomaterials
oaire.fundingReferenceThis research was funded by the National Research and Development Agency (ANID) through projects Fondecyt de Iniciacion en Investigacion 2022, 11220383 and 11220198.
oaire.licenseConditionhttps://creativecommons.org/licenses/by/4.0/
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo de Revista
oaire.versionVersión Publicada
utalca.catalogadorPAG
utalca.facultadUniversidad de Talca (Chile). Facultad de Ingeniería.
utalca.idcargapag261124
utalca.indexArtículo indexado en Web of Science
utalca.indexArtículo indexado en Scopus
utalca.informaciondegeneroHombre
utalca.odsIndustria, innovación e infraestructura
utalca.odsEnergía asequible y no contaminante
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
001351829300001.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format