3 results
Search Results
Now showing 1 - 3 of 3
Item MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamicsAutores: González-Alemán, Roy; Platero-Rochart, Daniel; Rodríguez-Serradet, Alejandro; Hernández-Rodríguez, Erix W.; Caballero, Julio; Leclerc, Fabrice; Montero-Cabrera, LuisMotivation: The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD. Results: Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories. Methodological improvements over the original version include the encoding of trajectories as a particular class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of 1 million frames using the RMSD metric in about 21h with <8 GB of RAM, a task that would have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN*implementation generally used.Item BitQT: a graph-based approach to the quality threshold clustering of molecular dynamicsAutores: González-Alemán, Roy; Platero-Rochart, Daniel; Hernández-Castillo, David; Hernández-Rodriguez, Erix W.; Caballero, Julio; Leclerc, Fabrice; Montero-Cabrera, LuisMotivation: Classical Molecular Dynamics (MD) is a standard computational approach to model time-dependent processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands clustering algorithms to reduce other post-simulation analysis complexity. The Quality Threshold (QT) variant is an appealing one from the vast number of available clustering methods. It guarantees that all members of a particular cluster will maintain a collective similarity established by a user-defined threshold. Unfortunately, its high computational cost for processing big data limits its application in the molecular simulation field. Results: In this work, we propose a methodological parallel between QT clustering and another well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm compared to the few implementations of QT for MD available in the literature. Our alternative provides results in good agreement with the exact one while strictly preserving the collective similarity of clusters.Item RCDPeaks: memory-efficient density peaks clustering of long molecular dynamicsAutores: Platero-Rochart, Daniel; González-Alemán, Roy; Hernández-Rodríguez, Erix W.; Leclerc, Fabrice; Caballero, Julio; Montero-Cabrera, LuisMotivation: Density Peaks is a widely spread clustering algorithm that has been previously applied to Molecular Dynamics (MD) simulations. Its conception of cluster centers as elements displaying both a high density of neighbors and a large distance to other elements of high density, particularly fits the nature of a geometrical converged MD simulation. Despite its theoretical convenience, implementations of Density Peaks carry a quadratic memory complexity that only permits the analysis of relatively short trajectories. Results: Here, we describe DP+, an exact novel implementation of Density Peaks that drastically reduces the RAM consumption in comparison to the scarcely available alternatives designed for MD. Based on DP+, we developed RCDPeaks, a refined variant of the original Density Peaks algorithm. Through the use of DP+, RCDPeaks was able to cluster a one-million frames trajectory using less than 4.5 GB of RAM, a task that would have taken more than 2 TB and about 3x more time with the fastest and less memory-hunger alternative currently available. Other key features of RCDPeaks include the automatic selection of parameters, the screening of center candidates and the geometrical refining of returned clusters. Availability and implementation: The source code and documentation of RCDPeaks are free and publicly available on GitHub (https://github.com/LQCT/RCDPeaks.git). Contact: roy_gonzalez@fq.uh.cu or daniel.platero@fq.uh.cu Supplementary information: Supplementary data are available at Bioinformatics online.