Artículo de Revista
Date
2024
Journal Title
Journal ISSN
Volume Title
Autor
Tuninetti, Víctor
Forcael, Diego
Valenzuela, Marian
Martínez, Alex
Ávila, Andrés
Medina, Carlos
Pincheira Orellana, Gonzalo Omar
Salas, Alexis
Oñate, Ángelo
Duchene, Laurent
Forcael, Diego
Valenzuela, Marian
Martínez, Alex
Ávila, Andrés
Medina, Carlos
Pincheira Orellana, Gonzalo Omar
Salas, Alexis
Oñate, Ángelo
Duchene, Laurent
Profesor Guía
Profesor Tutor
Profesor
Profesor Informante
Autor Institucional
Jefe de Proyecto
Profesor Co-Tutor
Profesor Patrocinante
Profesor Tutor
Publisher
Mdpi
Compartir este registro
Assessing Feed-Forward Backpropagation Artificial Neural Networks for Strain-Rate-Sensitive Mechanical Modeling
Abstract
The manufacturing processes and design of metal and alloy products can be performed over a wide range of strain rates and temperatures. To design and optimize these processes using computational mechanics tools, the selection and calibration of the constitutive models is critical. In the case of hazardous and explosive impact loads, it is not always possible to test material properties. For this purpose, this paper assesses the efficiency and the accuracy of different architectures of ANNs for the identification of the Johnson-Cook material model parameters. The implemented computational tool of an ANN-based parameter identification strategy provides adequate results in a range of strain rates required for general manufacturing and product design applications. Four ANN architectures are studied to find the most suitable configuration for a reduced amount of experimental data, particularly for cases where high-impact testing is constrained. The different ANN structures are evaluated based on the model's predictive capability, revealing that the perceptron-based network of 66 inputs and one hidden layer of 30 neurons provides the highest prediction accuracy of the effective flow stress-strain behavior of Ti64 alloy and three virtual materials.
Description
Keywords
Modeling , Mechanical behavior , Plastic flow , Strain rate , Artificial neural network
Citation
DOI
10.3390/ma17020317
Nivel de acceso
Acceso abierto
Enlace relacionado
Objetivos de Desarrollo Sostenible
Indexado
Artículo indexado en Web of Science
Artículo indexado en Scopus
Artículo indexado en Scopus