Assessing Feed-Forward Backpropagation Artificial Neural Networks for Strain-Rate-Sensitive Mechanical Modeling

datacite.creatorTuninetti, Víctor
datacite.creatorForcael, Diego
datacite.creatorValenzuela, Marian
datacite.creatorMartínez, Alex
datacite.creatorÁvila, Andrés
datacite.creatorMedina, Carlos
datacite.creatorPincheira Orellana, Gonzalo Omar
datacite.creatorSalas, Alexis
datacite.creatorOñate, Ángelo
datacite.creatorDuchene, Laurent
datacite.date.issued2024
datacite.identifierDOI
datacite.identifier.doi10.3390/ma17020317
datacite.identifier.issn1996-1944
datacite.identifier.orcid0000-0002-2808-0415
datacite.identifier.orcid0000-0003-1448-8644
datacite.identifier.orcid0000-0002-4542-3731
datacite.identifier.orcid0000-0001-6585-0442
datacite.identifier.orcid0000-0002-5853-0448
datacite.identifier.orcid0000-0001-7448-4798
datacite.identifier.wosidWOS:001151312800001
datacite.rightsAcceso abierto
datacite.subjectModeling
datacite.subjectMechanical behavior
datacite.subjectPlastic flow
datacite.subjectStrain rate
datacite.subjectArtificial neural network
datacite.titleAssessing Feed-Forward Backpropagation Artificial Neural Networks for Strain-Rate-Sensitive Mechanical Modeling
dc.date.accessioned2024-11-25T14:41:06Z
dc.date.available2024-11-25T14:41:06Z
dc.description.abstractThe manufacturing processes and design of metal and alloy products can be performed over a wide range of strain rates and temperatures. To design and optimize these processes using computational mechanics tools, the selection and calibration of the constitutive models is critical. In the case of hazardous and explosive impact loads, it is not always possible to test material properties. For this purpose, this paper assesses the efficiency and the accuracy of different architectures of ANNs for the identification of the Johnson-Cook material model parameters. The implemented computational tool of an ANN-based parameter identification strategy provides adequate results in a range of strain rates required for general manufacturing and product design applications. Four ANN architectures are studied to find the most suitable configuration for a reduced amount of experimental data, particularly for cases where high-impact testing is constrained. The different ANN structures are evaluated based on the model's predictive capability, revealing that the perceptron-based network of 66 inputs and one hidden layer of 30 neurons provides the highest prediction accuracy of the effective flow stress-strain behavior of Ti64 alloy and three virtual materials.
dc.description.pages12 p.
dc.identifier.folioDI22-0067
dc.identifier.urihttps://repositorio.utalca.cl/repositorio/handle/1950/14637
dc.languageInglés
dc.publisherMdpi
dc.relation.urihttps://www.mdpi.com/1996-1944/17/2/317
dc.sourceMaterials
oaire.citationTitleMaterials
oaire.fundingReferenceThis work was funded by Universidad de La Frontera DI22-0067.
oaire.licenseConditionhttp://creativecommons.org/licenses/by/4.0/
oaire.licenseCondition.urihttp://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo de Revista
oaire.versionVersión Publicada
utalca.catalogadorPAG
utalca.facultadUniversidad de Talca (Chile). Facultad de Ingeniería. Departamenteo de Tecnologías Industriales.
utalca.idcargapag251124
utalca.indexArtículo indexado en Web of Science
utalca.indexArtículo indexado en Scopus
utalca.informaciondegeneroHombre y Mujer
utalca.odsIndustria, innovación e infraestructura
utalca.odsProducción y consumo responsables
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
001151312800001.pdf
Size:
2.79 MB
Format:
Adobe Portable Document Format